Journal of Organometallic Chemistry, 354 (1988) 77-81 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Darstellung und Struktur von $[Cp_2Zr(OCOCF_3)(\mu-OH)]_2$

Simone Klima und Ulf Thewalt *

Sektion für Röntgen- und Elektronenbeugung, Universität Ulm, Oberer Eselsberg D-7900 Ulm (B.R.D.) (Eingegangen den 5. April 1988)

Abstract

The reaction of Cp₂ZrCl₂ with CF₃COOH in the two-phase system CHCl₃/H₂O yields the dinuclear complex $[Cp_2Zr(OCOCF_3)(\mu$ -OH)]_2 (1), which has crystallographic $\overline{1}$ symmetry. The Zr atoms are five-coordinated and have an 18-electron configuration. Crystal data for 1: monoclinic, $P2_1/n$, a 12.832(3), b 8.520(2), c 12.050(3) Å, β 99.68(2)°.

Zusammenfassung

Bei der Umsetzung von Cp_2ZrCl_2 mit CF_3COOH im Zweiphasensystem $CHCl_3/H_2O$ entsteht der Zweikernkomplex $[Cp_2Zr(OCOCF_3)(\mu-OH)]_2$ (1). Die fünffach koordinierten Zr-Atome besitzen in 1 eine 18-Elektronenkonfiguration. Kristalldaten von 1: monoklin, $P2_1/n$, a 12.832(3), b 8.520(2), c 12.050(3) Å, β 99.68(2)°.

Einführung

Titanocenbis(carboxylate) lassen sich ausgehend von Cp_2TiCl_2 nicht nur im wasserfreien Medium [1], sondern auch in Wasser darstellen, $Cp_2Ti(OCOC_6H_5)_2$ beispielsweise mit hoher Ausbeute aus Cp_2TiCl_2 und Natriumbenzoat [2]. Nach unseren bisherigen Erfahrungen entstehen bei den entsprechenden Umsetzungen von Cp_2ZrCl_2 mit Monocarbonsäuren nicht $Cp_2Zr(OCOR)_2$ -Komplexe, sondern unter Cyclopentadienverlust bevorzugt dreikernige Verbindungen mit CpZr-Einheiten [3]. In der vorliegenden Arbeit beschreiben wir die Darstellung in wässrigem Medium und die Struktur des neuartigen Zweikernkomplexes $[Cp_2Zr(OCOCF_3)(\mu-OH)]_2$ (1).

Ergebnisse und Diskussion

Der Zweikernkomplex $[Cp_2Zr(OCOCF_3)(\mu-OH)]_2$ (1) kann mit ca. 30% Ausbeute aus Cp_2ZrCl_2 und Trifluoressigsäure entsprechend Gl. 1 in Wasser dargestellt werden.

$$2Cp_2ZrCl_2 + 2CF_3COOH + 2H_2O \rightarrow [Cp_2Zr(OCOCF_3)(\mu-OH)]_2 + 4HCl$$
(1)
(1)

1 lässt sich formal als Assoziat zweier einkerniger $Cp_2Zr(OCOCF_3)(OH)$ -Moleküle (2) auffassen. Durch die Zusammenlagerung erreicht jedes Zr-Atom die Koordinationszahl fünf und damit gekoppelt eine 18-Elektronenkonfiguration. Ob ein Zr^{IV}-Zentrum einer Cp_2Zr^{IV} -Einheit sich mit zwei oder mit drei weiteren Ligandatomen umgibt, hängt von der Raumbeanspruchung der einzelnen Liganden ab [4]. Für das einkernige 2 gibt es noch eine andere, hier aber nicht realisierte Möglichkeit, um zur 18-Elektronenanordnung zu gelangen, indem nämlich die Carboxylatgruppe als zweizähniger Ligand fungiert. $Cp_2Zr(NO_3)Cl$ (3) ist ein Komplex mit entsprechender Struktur [5].

Dass auch Carboxylatgruppen gegenüber Zr als Chelatliganden auftreten können, haben wir kürzlich am dreikernigen Zirkonocenterephthalat gefunden, das Baugrup-

Fig. 1. ORTEP-Darstellung eines [Cp₂Zr(OCOCF₃)(µ-OH)]₂-Moleküls.

Tabelle 1

-				
$\overline{Zr(1)} - O(1)$	2.152(3)	O(1)-Zr(1)-O(1')	65.6(1)	
Zr(1) - O(1')	2.158(0)	Zr(1) - O(1) - Zr(1')	114.4(2)	
Zr(1) - O(2)	2.217(4)	O(1) - Zr(1) - O(2)	76.3(1)	
Zr(1) - Z(1)	2.252(10)	O(1') - Zr(1) - O(2)	141.9(1)	
Zr(1) - Z(2)	2.250(12)	Zr(1)-O(2)-C(1)	139.3(4)	
Zr(1) - Zr(1')	3.622(0)	O(2)-C(1)-O(3)	129.3(6)	
		Z(1)-Zr(1)-Z(2)	124.9(5)	
O(2) - C(1)	1.253(7)	•		
O(3)-C(1)	1.202(8)			
C(1) - C(2)	1.509(10)			
C(2)-F(1)	1.258(12)			
C(2) - F(2)	1.299(11)			
C(2) - F(3)	1.234(11)			
C(11)-C(12)	1.37(2)			
C(12)-C(13)	1.34(1)			
C(13)-C(14)	1.37(2)			
C(14)-C(15)	1.32(2)			
C(11)-C(15)	1.37(2)			
C(21)-C(22)	1.37(2)			
C(22) - C(23)	1.32(3)			
C(23)-C(24)	1.30(2)			
C(24)-C(25)	1.30(2)			
C(21)-C(25)	1.31(2)			

Wichtige Abstände (Å) und Winkel (°) in $[Cp_2Zr(OCOCF_3)(\mu-OH)]_2$ (1)^a

^a Z(1), Z(2) sind die Zentren der C(11) bzw. C(21) enthaltenden Cp-Ringe.

pen des Typs 4 enthält [4]. Offenbar ist aber die Donorstärke der Trifluoracetatgruppe nicht stark genug, um die Realisierung eines analogen Bindungsmodus zu erlauben.

Figur 1 zeigt das zentrosymmetrische Molekül von 1. Bindungsabstände und Winkel sind in Tabelle 1 aufgeführt. Die $Cp_2 ZrX_3$ -Gruppen in 1 stimmen bezüglich ihrer Geometrie in engen Grenzen mit den $Cp_2 ZrX_3$ -Gruppen in anderen strukturell untersuchten Komplexen überein (vergl. Zusammenstellung der entsprechenden Strukturdaten in [4]). Es überrascht allerdings, dass die beiden Zr-OH-Abstände in 1 gleich lang sind; denn für die anderen untersuchten Verbindungen hatte sich

abgezeichnet, dass der mittlere der drei X-Liganden der Cp₂Zr $\stackrel{\land}{\leftarrow}$ X Gruppe deutlich enger am Zr-Atom gebunden ist als die beiden peripheren X-Liganden – beispielsweise für das Kation $[Cp_2Zr(H_2O)]_3^{2+}$ [6]. Die Trifluoroacetatgruppen sind so orientiert, dass ihre freien O-Atome den H-Atomen der μ -OH-Gruppen benachbart sind (vergl. Fig. 1). Die O ··· O Abstände von 2.66 Å deuten auf das Vorliegen von H-Brücken hin.

Experimentelles und Strukturbestimmung

Darstellung von $[Cp_2Zr(OCOCF_3)(\mu-OH)]_2$ (1)

Lösungen von 293 mg Cp_2ZrCl_2 (1 mmol) in 30 ml $CHCl_3$ und 300 mg CF_3COOH (Überschuss) in 5 ml Wasser werden auf 0°C abgekühlt und 30 min miteinander gerührt. Dann wird die Chloroformphase abgetrennt, über $CaCl_2$

getrocknet und anschliessend mit 20 ml Ehter/Pentan Gemisch (3/1) überschichtet. Innerhalb von 3 Tagen wachsen dann bei 4°C an der Gefässwand farblose Kristalle der Titelverbindung, die abgesaugt und mit wenig Ether gewaschen werden. Ausbeute 0.12 g (34%). Gef.: C, 39.89; H, 3.01. $C_{24}H_{22}F_6O_6Zr_2$ (702.44) ber.: C, 40.98; H, 3.13%. IR-Daten (Nujol, cm⁻¹) 473m, 536m, 596s, 735s, 810m, 868m, 982w, 1030s, 1110w, 1175vs, 1230vs, 1490sh, 1670vs, 3140w, 3640m. Die Kristalle sind an der Luft beständig.

Röntgenstrukturanalyse

Die Röntgenmessungen erfolgten bei 20°C an einem Kristall (Abmessungen $0.5 \times 0.4 \times 0.2$ mm) mit Graphit-monochromatisierter Mo- K_{α} -Strahlung (λ 0.71069 Å) auf einem Philips-PW1100 Einkristalldiffraktometer. Kristalldaten: monoklin, Raumgruppe $P2_1/n$, Gitterkonstanten (aus den θ -Werten von 27 Reflexen): a 12.832(3), b 8.520(2), c 12.050(3) Å, β 99.68(2)°. Berechnete Dichte: 1.797 g/cm³ für Z = 4 (bezogen auf die Formel Cp₂Zr(OCOCF₃)(OH)). Gemessene Dichte: 1.80. Intensitätsdaten: $\theta/2\theta$ -Betrieb; Messbereich $4^{\circ} \le 2\theta \le 50^{\circ}$; 2282 unabhängige Reflexe erfasst. Lp-, aber keine Absorptionskorrektur angebracht (μ 7.7 cm⁻¹). 2053 Reflexe mit $F_0 \ge 2\sigma(F_0)$ für die weiteren Rechnungen benutzt. Die Struktur wurde mittels der Pattersonmethode und nachfolgender ΔF -Synthesen bestimmt. Die H-Atome liessen sich (bis auf zwei) in ΔF -Synthesen lokalisieren. H-Atome (an den berechneten Positionen C-H 1.0 Å) wurden bei den F_c -Rechnungen berücksichtigt, jedoch nicht verfeinert. Die Verfeinerung der Nicht-H-Atome mit anisotropen Temperaturfaktoren führte zu R = 0.046 und $R_w(F) = 0.048$. Atomparameter s. Tabelle 2. Die Atome der Cp-Ringe und der CF₃-Gruppe führen starke thermische Schwingungen aus. Die entsprechenden Atomabstände streuen daher stark und weichen zum Teil deutlich von den erwarteten Werten ab. Maximale Rest-

Tabelle 2

Atom	x	у	z	U(eq)
Zr(1)	0.00583(4)	0.10610(5)	0.37094(4)	0.032(1)
O(1)	-0.0070(3)	-0.1179(4)	0.4500(3)	0.040(2)
O(2)	-0.0070(4)	-0.0629(5)	0.2294(3)	0.056(3)
O(3)	0.0116(6)	-0.3127(6)	0.2813(4)	0.104(5)
C(1)	-0.0022(5)	0.2080(7)	0.2136(5)	0.055(4)
C(2)	-0.0131(8)	-0.2506(10)	0.0906(7)	0.080(6)
F(1)	0.0593(5)	-0.1986(10)	0.0422(5)	0.140(5)
F(2)	-0.0965(5)	-0.1887(12)	0.0306(5)	0.159(6)
F(3)	-0.0208(12)	-0.3929(8)	0.0714(6)	0.289(15)
C (11)	-0.1940(6)	0.1253(10)	0.3156(12)	0.094(7)
C(12)	-0.1668(6)	0.2397(12)	0.3960(6)	0.078(5)
C(13)	-0.1080(7)	0.3468(9)	0.3529(11)	0.093(7)
C(14)	-0.1020(8)	0.3024(16)	0.2445(10)	0.108(8)
C(15)	-0.1531(9)	0.1690(17)	0.2225(8)	0.109(8)
C(21)	0.1984(7)	0.0674(10)	0.3611(14)	0.102(8)
C(22)	0.1594(8)	0.1596(24)	0.2707(7)	0.127(11)
C(23)	0.1358(9)	0.2968(21)	0.3104(19)	0.162(14)
C(24)	0.1569(10)	0.2925(16)	0.4200(18)	0.141(12)
C(25)	0.1973(7)	0.1559(20)	0.4502(8)	0.104(8)

Atomparameter von [Cp2Zr(OCOCF3)(µ-OH)]2

elektronendichte: 0.92 e/Å³. Benutztes Programmsystem und benutzte Formfaktoren für Neutralatome wie in [2]. Weitere Einzelheiten zur Strukturbestimmung können beim Fachinformationszentrum Energie-Physik-Mathematik, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-52806, angefordert werden.

Dank

Die vorliegende Arbeit wurde durch den Fonds der Chemischen Industrie und das Land Baden-Württemberg im Rahmen des Schwerpunktprogramms "Strukturforschung" gefördert. Hierfür danken wir.

Literatur

- 1 Eine Zusammenstellung der relevanten Informationen findet sich in Gmelin Handbook of Inorganic Chemistry, 8th Ed., Organotitanium Compounds, Springer-Verlag, Berlin-Heidelberg, 1984, part 3, S. 23-33.
- 2 H.-P. Klein, K. Döppert und U. Thewalt, J. Organomet. Chem., 280 (1985) 203.
- 3 U. Thewalt, K. Döppert und W. Lasser, J. Organomet. Chem., 308 (1986) 303.
- 4 U. Thewalt, S. Klima und K. Berhalter, J. Organomet. Chem., 342 (1988) 303.
- 5 L.G. Kuz'mina, A.I. Yanovskii, Yu.T. Struchkov, M.Kh. Minacheva und E.M. Brainina, Koord. Khim., 11 (1985) 116.
- 6 U. Thewalt und W. Lasser, J. Organomet. Chem., 276 (1984) 341.